Prediction of daily global solar radiation and air temperature using six machine learning algorithms; a case of 27 European countries

نویسندگان

چکیده

The prediction of global solar radiation in a region is great importance as it provides investors and politicians with more detailed knowledge about the resource that region, which can be very beneficial for large-scale energy development. In this sense, main objective study to predict daily data 27 cities (Brussels, Paris, Lisbon, Madrid…), located countries, have mostly different distributions Europe. research, six machine-learning algorithms (Linear model (LM), Decision Tree (DT), Support Vector Machine (SVM), Deep Learning (DL), Random Forest (RF) Gradient Boosted Trees (GBT)) are used. training these algorithms, air temperature(Ta), wind speed(Va), relative humidity(RH) supplied from Meteonorm tool cover last years grouped two periods (1960–1990; 2000–2019). To decide on success four statistical metrics (Average Relative Error (ARE), Average absolute (AAE), Root Mean Squared (RMSE), R 2 (R-Squared)) discussed study. addition, forecasting temperature 2050 2100 were made using three most recent Intergovernmental Panel Climate Change (IPCC) scenarios (RCP2.6; RCP 4.5, 8.5). results show ARE, R, RMSE values all ranging 0.114 6.321, 0.382 0.985, 0.145 2.126 MJ/m , respectively. By analysing noticed tree exhibited worst result terms metrics. Among DL was recognized only algorithm exceeded t-critical value (The cutoff between retaining or rejecting null hypothesis). Globally, machine learning used research applied good accuracy. Despite this, SVM best among models It followed by DL, LM, GB, RF DT, • R2, metrics, t-critic value, Algorithms shown successful

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a comparison of linguistic and pragmatic knowledge: a case of iranian learners of english

در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...

15 صفحه اول

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

individual qualities and integrative motivation and their prediction of non-linguistic outcomes of learning english in intermediate iranian students: a psychological perspective

abstract this study investigated the predictability of variables from a motivational framework as well as individuals qualities to predict three non-linguistic outcomes of language learning. gardners socio-educational model with its measures has been used in the current study. individual qualities presented in this study include (1) age, (2) gender, and (3) language learning experience. the...

Estimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks

In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...

متن کامل

Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach

This paper discusses the performance of a novel Coral Reefs Optimization – Extreme Learning Machine (CRO–ELM) algorithm in a real problem of global solar radiation prediction. The work considers different meteorological data from the radiometric station at Murcia (southern Spain), both from measurements, radiosondes and meteorological models, and fully describes the hybrid CRO–ELM to solve the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ecological Informatics

سال: 2022

ISSN: ['1878-0512', '1574-9541']

DOI: https://doi.org/10.1016/j.ecoinf.2022.101643